A stabilized finite element formulation for liquid shells and its application to lipid bilayers
نویسندگان
چکیده
This paper presents a new finite element (FE) formulation for liquid shells that is based on an explicit, 3D surface discretization using C1-continuous finite elements constructed from NURBS interpolation. Both displacement-based and mixed FE formulations are proposed. The latter is needed for area-incompressible material behavior, where penalty-type regularizations can lead to misleading results. In order to obtain quasi-static solutions, several numerical stabilization schemes are proposed based on either stiffness, viscosity or projection. Several numerical examples are considered in order to illustrate the accuracy and the capabilities of the proposed formulation, and to compare the different stabilization schemes. The presented formulation is capable of simulating non-trivial surface shapes associated with tube formation and proteininduced budding of lipid bilayers. In the latter case, the presented formulation yields nonaxisymmetric solutions, which have not been observed in previous simulations. It is shown that those non-axisymmetric shapes are preferred over axisymmetric ones.
منابع مشابه
Elastic Buckling Analysis of Composite Shells with Elliptical Cross-section under Axial Compression
In the present research, the elastic buckling of composite cross-ply elliptical cylindrical shells under axial compression is studied through finite element approach. The formulation is based on shear deformation theory and the serendipity quadrilateral eight-node element is used to study the elastic behavior of elliptical cylindrical shells. The strain-displacement relations are accurately acc...
متن کاملTheoretical and Experimental Collapse Analysis of Ring Stiffened Shells Using Finite Element Software Packages and Application of Results to a Submarine Pressure Hull
It is empirically established that, due to a number of factors involved, a classical (linear) analysis of buckling pressure is impossible. Nonlinear theories of buckling are, therefore, required that involve effective factors such as imperfections and welding effects. In this study, models are developed which are as close to allowable standard deviations as possible. In the next stage, their bu...
متن کاملTheoretical and Experimental Collapse Analysis of Ring Stiffened Shells Using Finite Element Software Packages and Application of Results to a Submarine Pressure Hull
It is empirically established that, due to a number of factors involved, a classical (linear) analysis of buckling pressure is impossible. Nonlinear theories of buckling are, therefore, required that involve effective factors such as imperfections and welding effects. In this study, models are developed which are as close to allowable standard deviations as possible. In the next stage, their bu...
متن کاملAn Efficient Co Finite Element Approach for Bending Analysis of Functionally Graded Ceramic-Metal Skew Shell Panels
In this article, the prominence has been given to study the influence of skew angle on bending response of functionally graded material shell panels under thermo-mechanical environment. Derivation of governing equations is based on the Reddy’s higher-order shear deformation theory and Sander’s kinematic equations. To circumvent the problem of C1 continuity requirement coupled with the finite el...
متن کاملIncremental layerwise finite element formulation for viscoelastic response of multilayered pavements
This paper provides an incremental layerwise finite element formulation for the viscoelastic analysis of multilayered pavements. The constitutive behavior of asphalt concrete is represented by the Prony series. Layerwise finite element has been shown to provide an efficient and accurate tool for the numerical simulation of laminated structures. Most of the previous research on numerical simula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 330 شماره
صفحات -
تاریخ انتشار 2017